If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=171
We move all terms to the left:
b^2-(171)=0
a = 1; b = 0; c = -171;
Δ = b2-4ac
Δ = 02-4·1·(-171)
Δ = 684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{684}=\sqrt{36*19}=\sqrt{36}*\sqrt{19}=6\sqrt{19}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{19}}{2*1}=\frac{0-6\sqrt{19}}{2} =-\frac{6\sqrt{19}}{2} =-3\sqrt{19} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{19}}{2*1}=\frac{0+6\sqrt{19}}{2} =\frac{6\sqrt{19}}{2} =3\sqrt{19} $
| -8-2x/3=-6 | | 30x=900-30x | | 4x-x=6+8 | | 2p+10=-8p | | 9x+8=90 | | 8+3(2x+1)=0 | | 3m-1=-8 | | 2(5x-8)+2(3x)=P | | 1.72=4.7x+3.6 | | 8x=144-18x | | 28+j=25 | | x^2-10x+25=3x-3 | | 20=-4(3a-12) | | 8(3x-10)+15=79 | | |9x-6|6=30 | | 6+1/2x=8 | | 15x^2-x-2/3x+1=0 | | 123-(6x+16)=6(x+7)+x | | 4x=3914+(14=94+9) | | 5(x+6)=2(x-15) | | 10+4s=2 | | 3x=34-34 | | 5x^2-100x+465=0 | | 3(4p+8)+17=124 | | (1-3x)=22-3(x-13) | | 0.85x=x-2 | | 123-(6x+16)=(x+7)+x | | 4x^2+5x−13=−7 | | 1/4p=8 | | 4v^2-15v+10=0 | | -2/3(6x-12)=14 | | 19+34=-2(7b-1) |